Precompactness and Total Boundedness in Products of Metric Spaces
نویسنده
چکیده
We show that the canonical quantifications of uniform properties such as precompactness and total boundedness, which were already studied by Kuratowski and Hausdorff in the setting of complete metric spaces, can be generalized in the setting of products of metric spaces in an intuitively appealing way. 2000 Mathematics Subject Classification. 54E15, 18B30.
منابع مشابه
Global and Local Boundedness of Polish Groups
We present a comprehensive theory of boundedness properties for Polish groups developed with a main focus on Roelcke precompactness (precompactness of the lower uniformity) and Property (OB) (boundedness of all isometric actions on separable metric spaces). In particular, these properties are characterised by the orbit structure of isometric or continuous affine representations on separable Ban...
متن کاملExtended graphs based on KM-fuzzy metric spaces
This paper, applies the concept of KM-fuzzy metric spaces and introduces a novel concept of KM-fuzzy metric graphs based on KM-fuzzy metric spaces. This study, investigates the finite KM-fuzzy metric spaces with respect to metrics and KM-fuzzy metrics and constructs KM-fuzzy metric spaces on any given non-empty sets. It tries to extend the concept of KM-fuzzy metric spaces to a larger ...
متن کاملBoundedness of linear order-homomorphisms in $L$-topological vector spaces
A new definition of boundedness of linear order-homomorphisms (LOH)in $L$-topological vector spaces is proposed. The new definition iscompared with the previous one given by Fang [The continuity offuzzy linear order-homomorphism, J. Fuzzy Math. 5 (4) (1997)829$-$838]. In addition, the relationship between boundedness andcontinuity of LOHs is discussed. Finally, a new uniform boundednessprincipl...
متن کاملUniform Boundedness Principle for operators on hypervector spaces
The aim of this paper is to prove the Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear operators and hence strong linear operators on Banach hypervector spaces. Also we prove the continuity of the product operation in such spaces.
متن کاملTHE UNIFORM BOUNDEDNESS PRINCIPLE IN FUZZIFYING TOPOLOGICAL LINEAR SPACES
The main purpose of this study is to discuss the uniform boundednessprinciple in fuzzifying topological linear spaces. At first theconcepts of uniformly boundedness principle and fuzzy equicontinuousfamily of linear operators are proposed, then the relations betweenfuzzy equicontinuous and uniformly bounded are studied, and with thehelp of net convergence, the characterization of fuzzyequiconti...
متن کامل